The anthropogenic salt cycle | Nature Reviews Earth & Environment

·

·


  • Jackson, R. B. & Jobbágy, E. G. From icy roads to salty streams. Proc. Natl Acad. Sci. USA 102, 14487–14488 (2005).

    Article 

    Google Scholar 

  • Anning, D. W. & Flynn, M. E. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States (USGS, 2014).

  • Dugan, H. A. & Arnott, S. E. The ecosystem implications of road salt as a pollutant of freshwaters. Wiley Interdiscip. Rev. Water 10, e1629 (2022).

    Article 

    Google Scholar 

  • Cañedo-Argüelles, M. et al. Effects of potash mining on river ecosystems: an experimental study. Environ. Pollut. 224, 759–770 (2017).

    Article 

    Google Scholar 

  • US Geological Survey. How large is a lifetime supply of minerals for the average person? USGS https://www.usgs.gov/faqs/how-large-a-lifetime-supply-minerals-average-person (2023).

  • Grant, S. B. et al. Can common pool resource theory catalyze stakeholder-driven solutions to the freshwater salinization syndrome? Environ. Sci. Technol. 56, 13517–13527 (2022).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. 8, 190–211 (2023).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154, 255–292 (2021).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Phil. Trans. R. Soc. B 374, 20180017 (2019).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Making ‘chemical cocktails’ — evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. 119, 104632 (2020).

    Article 

    Google Scholar 

  • Bhide, S. V. et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat. Sustain. 4, 699–707 (2021).

    Article 

    Google Scholar 

  • DeVilbiss, S. E., Steele, M. K., Krometis, L.-A. H. & Badgley, B. D. Freshwater salinization increases survival of Escherichia coli and risk of bacterial impairment. Water Res. 191, 116812 (2021).

    Article 

    Google Scholar 

  • Johnsen, H. K., Rueslatten, H. G. & Hovland, M. T. The ‘global salt cycle’: formation of giant salt accumulations, a result of subduction, mantle upwelling, and rifting. Preprint at https://doi.org/10.20944/preprints202107.0377.v1 (2021).

  • Kostick, D. S. Material flow of salt (USGS, 1993).

  • Meybeck, M. in Treatise on Geochemistry Vol. 5 (eds Holland, H. D. & Turekian, K. K.) 207–223 (Elsevier, 2003).

  • Anderson, N. L. & Knapp, R. An overview of some of the large scale mechanisms of salt dissolution in western Canada. Geophysics 58, 1375–1387 (1993).

    Article 

    Google Scholar 

  • Anderson, R. Y. & Kirkland, D. W. Dissolution of salt deposits by brine density flow. Geology 8, 66 (1980).

    Article 

    Google Scholar 

  • Jenyon, M. K. Seismic expression of salt dissolution-related features in the North Sea. Bull. Can. Pet. Geol. 36, 274–283 (1988).

    Google Scholar 

  • Anderson, R. Y. Deep-seated salt dissolution in the Delaware Basin, Texas, and New Mexico. New Mexico Geol. Soc. 10, 133–145 (1981).

    Google Scholar 

  • Cooper, A. H. in Geological Hazards in the UK: Their Occurrence, Monitoring and Mitigation Ch. 14 (eds Giles, D. P. & Griffiths, J. S.) (Geological Society of London, 2020).

  • Smith, J. E. & Santamarina, J. C. Red sea evaporites: formation, creep and dissolution. Earth Sci. Rev. 232, 104115 (2022).

    Article 

    Google Scholar 

  • Hudec, M. R. & Jackson, M. P. A. Terra infirma: understanding salt tectonics. Earth Sci. Rev. 82, 1–28 (2007).

    Article 

    Google Scholar 

  • Hopmans, J. W. et al. in Advances in Agronomy Vol. 169 Ch. 1 (ed. Sparks, D. L.) 1–191 (Academic, 2021).

  • Daliakopoulos, I. N. et al. The threat of soil salinity: a European scale review. Sci. Total Environ. 573, 727–739 (2016).

    Article 

    Google Scholar 

  • White, P. J. & Broadley, M. R. Chloride in soils and its uptake and movement within the plant: a review. Ann. Bot. 88, 967–988 (2001).

    Article 

    Google Scholar 

  • Ali, S. et al. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Env. Sci. Pollut. Res. 24, 12700–12712 (2017).

    Article 

    Google Scholar 

  • Taylor, L. L. et al. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7, 171–191 (2009).

    Article 

    Google Scholar 

  • Likens, G. E. et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89–173 (1998).

    Article 

    Google Scholar 

  • Leri, A. C. & Myneni, S. C. B. Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Glob. Biogeochem. Cycles 24, GB4021 (2010).

    Article 

    Google Scholar 

  • Sverdrup, H. Chemical weathering of soil minerals and the role of biological processes. Fungal Biol. Rev. 23, 94–100 (2009).

    Article 

    Google Scholar 

  • Tripler, C. E., Kaushal, S. S., Likens, G. E. & Todd Walter, M. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).

    Article 

    Google Scholar 

  • Elmore, A. J., Kaste, J. M., Okin, G. S. & Fantle, M. S. Groundwater influences on atmospheric dust generation in deserts. J. Arid Environ. 72, 1753–1765 (2008).

    Article 

    Google Scholar 

  • Li, X., Chang, S. X. & Salifu, K. F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ. Rev. 22, 41–50 (2014).

    Article 

    Google Scholar 

  • Schlesinger, W. H. The formation of caliche in soils of the Mojave Desert, California. Geochim. Cosmochim. Acta 49, 57–66 (1985).

    Article 

    Google Scholar 

  • Stallard, R. F. Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu. Rev. Earth Planet. Sci. 23, 11–39 (1995).

    Article 

    Google Scholar 

  • Shields, G. A. & Mills, B. J. W. Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology 49, 299–303 (2020).

    Article 

    Google Scholar 

  • Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article 

    Google Scholar 

  • Vodyanitskii, Yu. N. & Makarov, M. I. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: a review. Eurasian Soil Sci. 50, 1025–1032 (2017).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends. Front. Environ. Sci. 11, 1122485 (2023).

    Article 

    Google Scholar 

  • Domenico, P. A. & Robbins, G. A. The displacement of connate water from aquifers. Geol. Soc. Am. Bull. 96, 328–335 (1985).

    Article 

    Google Scholar 

  • Yager, R. M., McCoy, K. J., Voss, C. I., Sanford, W. E. & Winston, R. B. The role of uplift and erosion in the persistence of saline groundwater in the shallow subsurface. Geophys. Res. Lett. 44, 3672–3681 (2017).

    Article 

    Google Scholar 

  • Younger, P. L., Boyce, A. J. & Waring, A. J. Chloride waters of Great Britain revisited: from subsea formation waters to onshore geothermal fluids. Proc. Geol. Assoc. 126, 453–465 (2015).

    Article 

    Google Scholar 

  • Stotler, R. L., Frape, S. K., Ruskeeniemi, T., Pitkänen, P. & Blowes, D. W. The interglacial–glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters. Geochim. Cosmochim. Acta 76, 45–67 (2012).

    Article 

    Google Scholar 

  • Li, C., Gao, X., Li, S. & Bundschuh, J. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Env. Sci. Pollut. Res. 27, 41157–41174 (2020).

    Article 

    Google Scholar 

  • Tosaki, Y. et al. Deep incursion of seawater into the Hiroshima Granites during the Holocene transgression: evidence from 36Cl age of saline groundwater in the Hiroshima area, Japan. Geochem. J. 51, 263–275 (2017).

    Article 

    Google Scholar 

  • Manca, F., Capelli, G. & Tuccimei, P. Sea salt aerosol groundwater salinization in the Litorale Romano Natural Reserve (Rome, Central Italy). Env. Earth Sci. 73, 4179–4190 (2015).

    Article 

    Google Scholar 

  • Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).

    Article 

    Google Scholar 

  • Mackenzie, F. T. & Kump, L. R. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270, 586–586 (1995).

    Article 

    Google Scholar 

  • Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    Article 

    Google Scholar 

  • Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).

    Article 

    Google Scholar 

  • Briggs, L. I. Evaporite facies. J. Sediment. Res. 28, 46–56 (1958).

    Google Scholar 

  • Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 2: application of a new salt-forming model on selected cases. Mar. Pet. Geol. 92, 128–148 (2018).

    Article 

    Google Scholar 

  • Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 1: towards a new understanding. Mar. Pet. Geol. 92, 987–1009 (2018).

    Article 

    Google Scholar 

  • Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).

    Article 

    Google Scholar 

  • Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).

    Article 

    Google Scholar 

  • Kohfeld, K. E. & Harrison, S. P. DIRTMAP: the geological record of dust. Earth Sci. Rev. 54, 81–114 (2001).

    Article 

    Google Scholar 

  • Lawrence, C. R. & Neff, J. C. The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem. Geol. 267, 46–63 (2009).

    Article 

    Google Scholar 

  • Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002).

    Article 

    Google Scholar 

  • Feger, K. H. in Magnesium Deficiency in Forest Ecosystems (eds Hüttl, R. F. & Schaaf, W.) 67–99 (Springer, 1997).

  • Middleton, N. J. Desert dust hazards: a global review. Aeolian Res. 24, 53–63 (2017).

    Article 

    Google Scholar 

  • Skiles, S. M. et al. Implications of a shrinking Great Salt Lake for dust on snow deposition in the Wasatch Mountains, UT, as informed by a source to sink case study from the 13–14 April 2017 dust event. Environ. Res. Lett. 13, 124031 (2018).

    Article 

    Google Scholar 

  • Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys. 45, RG1002 (2007).

    Article 

    Google Scholar 

  • Tjandraatmadja, G., Pollard, C., Sheedy, C. & Gozukra, Y. Sources of contaminants in domestic wastewater: nutrients and additional elements from household products (CSIRO, 2010).

  • Diaper, C. et al. Sources of critical contaminants in domestic wastewater: contaminant loads from household appliances (CSIRO, 2008).

  • US Geological Survey. Minerals Yearbook, Volume 1: Metals and Minerals (USGS, 2023).

  • Kaushal, S. S. et al. Freshwater salinization syndrome alters retention and release of chemical cocktails along flowpaths: from stormwater management to urban streams. Freshw. Sci. 41, 420–441 (2022).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Increased river alkalinization in the Eastern U.S. Environ. Sci. Technol. 47, 10302–10311 (2013).

    Google Scholar 

  • Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).

    Article 

    Google Scholar 

  • Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).

    Article 

    Google Scholar 

  • Drake, T. W. et al. Increasing alkalinity export from large Russian arctic rivers. Environ. Sci. Technol. 52, 8302–8308 (2018).

    Article 

    Google Scholar 

  • Gomez, F. A., Wanninkhof, R., Barbero, L. & Lee, S.-K. Increasing river alkalinity slows ocean acidification in the Northern Gulf of Mexico. Geophys. Res. Lett. 48, e2021GL096521 (2021).

    Article 

    Google Scholar 

  • Cai, W.-J. et al. A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont. Shelf Res. 28, 1538–1549 (2008).

    Article 

    Google Scholar 

  • Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article 

    Google Scholar 

  • Kaushal, S. S. et al. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl. Geochem. 83, 121–135 (2017).

    Article 

    Google Scholar 

  • Ross, M. R. V., Nippgen, F., Hassett, B. A., McGlynn, B. L. & Bernhardt, E. S. Pyrite oxidation drives exceptionally high weathering rates and geologic CO2 release in mountaintop-mined landscapes. Glob. Biogeochem. Cycles 32, 1182–1194 (2018).

    Article 

    Google Scholar 

  • Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603–604, 94–108 (2017).

    Article 

    Google Scholar 

  • Bester, M. L., Frind, E. O., Molson, J. W. & Rudolph, D. L. Numerical investigation of road salt impact on an urban wellfield. Groundwater 44, 165–175 (2006).

    Article 

    Google Scholar 

  • Stets, E. G., Kelly, V. J. & Crawford, C. G. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. Sci. Total Environ. 488–489, 280–289 (2014).

    Article 

    Google Scholar 

  • Raymond, P. A., Oh, N.-H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi river. Nature 451, 449–452 (2008).

    Article 

    Google Scholar 

  • Yusta-García, R., Orta-Martínez, M., Mayor, P., González-Crespo, C. & Rosell-Melé, A. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers. Environ. Pollut. 225, 370–380 (2017).

    Article 

    Google Scholar 

  • Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H. & Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334–8348 (2014).

    Article 

    Google Scholar 

  • Badaruddin, S., Werner, A. D. & Morgan, L. K. Water table salinization due to seawater intrusion. Water Resour. Res. 51, 8397–8408 (2015).

    Article 

    Google Scholar 

  • Baraza, T. & Hasenmueller, E. A. Road salt retention and transport through vadose zone soils to shallow groundwater. Sci. Total Environ. 755, 142240 (2021).

    Article 

    Google Scholar 

  • Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).

    Article 

    Google Scholar 

  • Cao, T., Han, D. & Song, X. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. 603, 126844 (2021).

    Article 

    Google Scholar 

  • Jasechko, S., Perrone, D., Seybold, H., Fan, Y. & Kirchner, J. W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 11, 3229 (2020).

    Article 

    Google Scholar 

  • Panthi, J., Pradhanang, S. M., Nolte, A. & Boving, T. B. Saltwater intrusion into coastal aquifers in the contiguous United States — a systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 836, 155641 (2022).

    Article 

    Google Scholar 

  • Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209 (2018).

    Article 

    Google Scholar 

  • US Food and Drug Administration. Sodium in your diet: use the nutrition facts label and reduce your intake (FDA, 2022).

  • Tjandraatmadja, G., Pollard, C., Gozukara, Y. & Sheedy, C. Origins of priority contaminants in household wastewater — an experimental assessment (CSIRO, 2009).

  • van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Datasets of the phosphorus content in laundry and dishwasher detergents. Data Brief 21, 2284–2289 (2018).

    Article 

    Google Scholar 

  • Ivushkin, K. et al. Global mapping of soil salinity change. Remote Sens. Environ. 231, 111260 (2019).

    Article 

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. Saline soils and their management. FAO https://www.fao.org/3/x5871e/x5871e04.htm (2016).

  • Mahajan, S. & Tuteja, N. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444, 139–158 (2005).

    Article 

    Google Scholar 

  • Litalien, A. & Zeeb, B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698, 134235 (2020).

    Article 

    Google Scholar 

  • Jeppesen, E., Beklioğlu, M., Özkan, K. & Akyürek, Z. Salinization increase due to climate change will have substantial negative effects on inland waters: a call for multifaceted research at the local and global scale. Innovation 1, 100030 (2020).

    Google Scholar 

  • Letolle, R., Aladin, N., Filipov, I. & Boroffka, N. G. O. The future chemical evolution of the Aral Sea from 2000 to the years 2050. Mitig. Adapt. Strateg. Glob. Change 10, 51–70 (2005).

    Article 

    Google Scholar 

  • Darst, B. C. Development of the potash fertilizer industry. Fertil. Res. 28, 103–107 (1991).

    Article 

    Google Scholar 

  • David, M. B., Mitchell, C. A., Gentry, L. E. & Salemme, R. K. Chloride sources and losses in two tile-drained agricultural watersheds. J. Environ. Qual. 45, 341–348 (2016).

    Article 

    Google Scholar 

  • Drew, L. J., Langer, W. H. & Sachs, J. S. Environmentalism and natural aggregate mining. Nat. Resour. Res. 11, 19–28 (2002).

    Article 

    Google Scholar 

  • Winkler, E. M. Weathering and weathering rates of natural stone. Environ. Geol. Water Sci. 9, 85–92 (1987).

    Article 

    Google Scholar 

  • Abuduwaili, J., Liu, D. & Wu, G. Saline dust storms and their ecological impacts in arid regions: saline dust storms and their ecological impacts in arid regions. J. Arid Land 2, 144–150 (2010).

    Article 

    Google Scholar 

  • Gholampour, A. et al. Characterization of saline dust emission resulted from Urmia Lake drying. J. Env. Health Sci. Eng. 13, 82 (2015).

    Article 

    Google Scholar 

  • Neff, J. C. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 1, 189–195 (2008).

    Article 

    Google Scholar 

  • Goudie, A. S. & Middleton, N. J. The changing frequency of dust storms through time. Clim. Change 20, 197–225 (1992).

    Article 

    Google Scholar 

  • Kolesar, K. R. et al. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application. Atmos. Environ. 177, 195–202 (2018).

    Article 

    Google Scholar 

  • McNamara, S. M. et al. Observation of road salt aerosol driving inland wintertime atmospheric chlorine chemistry. ACS Cent. Sci. 6, 684–694 (2020).

    Article 

    Google Scholar 

  • Kakavas, S. & Pandis, S. N. Effects of urban dust emissions on fine and coarse PM levels and composition. Atmos. Environ. 246, 118006 (2021).

    Article 

    Google Scholar 

  • Parisi, A., Monno, V. & Fidelibus, M. D. Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. Int. J. Disaster Risk Reduct. 30, 292–305 (2018).

    Article 

    Google Scholar 

  • Hintz, W. D. et al. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. Ecol. Appl. 27, 833–844 (2017).

    Article 

    Google Scholar 

  • Hintz, W. D., Jones, D. K. & Relyea, R. A. Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects. Phil. Trans. R. Soc. B 374, 20180012 (2019).

    Article 

    Google Scholar 

  • Moffett, E. R., Baker, H. K., Bonadonna, C. C., Shurin, J. B. & Symons, C. C. Cascading effects of freshwater salinization on plankton communities in the Sierra Nevada. Limnol. Oceanogr. Lett. 8, 30–37 (2023).

    Article 

    Google Scholar 

  • Latham, J. & Smith, M. H. Effect on global warming of wind-dependent aerosol generation at the ocean surface. Nature 347, 372–373 (1990).

    Article 

    Google Scholar 

  • Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72 (2007).

    Article 

    Google Scholar 

  • Vengosh, A. Salinization and saline environments. Treatise Geochem. 9, 35 (2003).

    Google Scholar 

  • Pereira, C. S., Lopes, I., Abrantes, I., Sousa, J. P. & Chelinho, S. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Phil. Trans. R. Soc. B 374, 20180251 (2019).

    Article 

    Google Scholar 

  • Hintz, W. D. et al. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl Acad. Sci. USA 119, e2115033119 (2022).

    Article 

    Google Scholar 

  • Cunillera-Montcusí, D. et al. Freshwater salinisation: a research agenda for a saltier world. Trends Ecol. Evol. 37, 440–453 (2022).

    Article 

    Google Scholar 

  • Cañedo-Argüelles, M. et al. Salinisation of rivers: an urgent ecological issue. Environ. Pollut. 173, 157–167 (2013).

    Article 

    Google Scholar 

  • Kinsman‐Costello, L. et al. Mud in the city: effects of freshwater salinization on inland urban wetland nitrogen and phosphorus availability and export. Limnol. Oceanogr. Lett. 8, 112–130 (2023).

    Article 

    Google Scholar 

  • Kaushal, S. S. Increased salinization decreases safe drinking water. Environ. Sci. Technol. 50, 2765–2766 (2016).

    Article 

    Google Scholar 

  • Jardine, A., Speldewinde, P., Carver, S. & Weinstein, P. Dryland salinity and ecosystem distress syndrome: human health implications. Ecohealth 4, 10–17 (2007).

    Article 

    Google Scholar 

  • Shammi, M., Rahman, Md. M., Bondad, S. & Bodrud-Doza, Md. Impacts of salinity intrusion in community health: a review of experiences on drinking water sodium from coastal areas of Bangladesh. Healthcare 7, 50 (2019).

    Article 

    Google Scholar 

  • Khan, A. E. et al. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study. PLoS ONE 9, e108715 (2014).

    Article 

    Google Scholar 

  • Small, I., van der Meer, J. & Upshur, R. E. Acting on an environmental health disaster: the case of the Aral Sea. Environ. Health Perspect. 109, 547–549 (2001).

    Article 

    Google Scholar 

  • Jones, B. A. & Fleck, J. Shrinking lakes, air pollution, and human health: evidence from California’s Salton Sea. Sci. Total Environ. 712, 136490 (2020).

    Article 

    Google Scholar 

  • Ghale, Y. A. G., Tayanc, M. & Unal, A. Dried bottom of Urmia Lake as a new source of dust in the northwestern Iran: understanding the impacts on local and regional air quality. Atmos. Environ. 262, 118635 (2021).

    Article 

    Google Scholar 

  • Lazur, A., VanDerwerker, T. & Koepenick, K. Review of implications of road salt use on groundwater quality — corrosivity and mobilization of heavy metals and radionuclides. Water Air Soil Pollut. 231, 474 (2020).

    Article 

    Google Scholar 

  • McNaboe, L. A., Robbins, G. A. & Dietz, M. E. Mobilization of radium and radon by deicing salt contamination of groundwater. Water Air Soil Pollut. 228, 94 (2017).

    Article 

    Google Scholar 

  • Vinson, D. S. et al. Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). Appl. Geochem. 38, 161–175 (2013).

    Article 

    Google Scholar 

  • Tamamura, S. et al. Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite. J. Radioanal. Nucl. Chem. 299, 569–575 (2014).

    Article 

    Google Scholar 

  • Edwards, M. & Triantafyllidou, S. Chloride‐to‐sulfate mass ratio and lead leaching to water. J. Am. Water Work. Assoc. 99, 96–109 (2007).

    Article 

    Google Scholar 

  • Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272, 244–246 (1996).

    Article 

    Google Scholar 

  • Bai, J. et al. Nitrification potential of marsh soils from two natural saline–alkaline wetlands. Biol. Fertil. Soils 46, 525–529 (2010).

    Article 

    Google Scholar 

  • Duan, S. & Kaushal, S. S. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences 12, 7331–7347 (2015).

    Article 

    Google Scholar 

  • Van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).

    Article 

    Google Scholar 

  • Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article 

    Google Scholar 

  • Weinberger, R., Lyakhovsky, V., Baer, G. & Begin, Z. B. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: implications for effective viscosity of rock salt. Geochem. Geophys. Geosyst. 7, Q05014 (2006).

    Article 

    Google Scholar 

  • Bruthans, J. et al. Holocene marine terraces on two salt diapirs in the Persian Gulf, Iran: age, depositional history and uplift rates. J. Quat. Sci. 21, 843–857 (2006).

    Article 

    Google Scholar 

  • Weinberg, R. F. The upward transport of inclusions in Newtonian and power-law salt diapirs. Tectonophysics 228, 141–150 (1993).

    Article 

    Google Scholar 

  • Wilkinson, B. H., McElroy, B. J., Kesler, S. E., Peters, S. E. & Rothman, E. D. Global geologic maps are tectonic speedometers — rates of rock cycling from area-age frequencies. Geol. Soc. Am. Bull. 121, 760–779 (2009).

    Article 

    Google Scholar 

  • Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).

    Article 

    Google Scholar 

  • Wu, C., Lin, Z. & Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 20, 10401–10425 (2020).

    Article 

    Google Scholar 

  • Grythe, H., Ström, J., Krejci, R., Quinn, P. & Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 14, 1277–1297 (2014).

    Article 

    Google Scholar 

  • National Atmospheric Deposition Program. National trends network gradient map. NADP https://nadp.slh.wisc.edu/maps-data/ntn-gradient-maps (2021).

  • Likens, G. E. Biogeochemistry of a Forested Ecosystem 3rd edn (Springer, 2013).

  • Schlesinger, W. H. Community structure, dynamics and nutrient cycling in the Okefenokee Cypress swamp-forest. Ecol. Monogr. 48, 43–65 (1978).

    Article 

    Google Scholar 

  • Lucas, Y. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu. Rev. Earth Planet. Sci. 13, 135–163 (2001).

    Article 

    Google Scholar 

  • van der Heijden, G. et al. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: results from an isotopic labeling study in a beech forest on base-poor soil. Biogeochemistry 122, 375–393 (2015).

    Article 

    Google Scholar 

  • Rose, D. A., Konukcu, F. & Gowing, J. W. Effect of watertable depth on evaporation and salt accumulation from saline groundwater. Soil Res. 43, 565 (2005).

    Article 

    Google Scholar 

  • Gran, M. et al. Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil. J. Hydrol. 396, 215–220 (2011).

    Article 

    Google Scholar 

  • Yu, L. A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. 116, C10025 (2011).

    Article 

    Google Scholar 

  • Qu, T., Gao, S. & Fukumori, I. What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett. 38, L07602 (2011).

    Article 

    Google Scholar 

  • Milliman, J. D. & Droxler, A. W. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol. Rundsch. 85, 496–504 (1996).

    Article 

    Google Scholar 

  • Krissansen-Totton, J. & Catling, D. C. A coupled carbon-silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate. Earth Planet. Sci. Lett. 537, 116181 (2020).

    Article 

    Google Scholar 

  • Von Damm, K. L. et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Article 

    Google Scholar 

  • Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article 

    Google Scholar 

  • Lake, R. A. & Lewis, E. L. Salt rejection by sea ice during growth. J. Geophys. Res. 75, 583–597 (1970).

    Article 

    Google Scholar 

  • Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res. 99, 12319–12341 (1994).

    Article 

    Google Scholar 

  • Worster, M. G. & Rees Jones, D. W. Sea-ice thermodynamics and brine drainage. Phil. Trans. R. Soc. A 373, 20140166 (2015).

    Article 

    Google Scholar 

  • Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. Brine fluxes from growing sea ice. Geophys. Res. Lett. 38, L04501 (2011).

    Article 

    Google Scholar 

  • Wakatsuchi, M. & Ono, N. Measurements of salinity and volume of brine excluded from growing sea ice. J. Geophys. Res. 88, 2943–2951 (1983).

    Article 

    Google Scholar 

  • Gherardi, J.-M. et al. Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth Planet. Sci. Lett. 240, 710–723 (2005).

    Article 

    Google Scholar 

  • Bresler, E. Transport of salts in soils and subsoils. Agric. Water Manag. 4, 35–62 (1981).

    Article 

    Google Scholar 

  • Wagenet, R. J. in Chemical Mobility and Reactivity in Soil Systems Ch. 9 (eds Nelson, D. W., Elrick, D. E. & Tanji, K. K.) 123–140 (Wiley, 1983).

  • Howe, J. A. & Smith, A. P. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J. et al.) 23–55 (Elsevier, 2021).

  • Danielsen, S. W. & Kuznetsova, E. in Engineering Geology for Society and Territory Vol. 5 (eds Lollino, G. et al.) 41–44 (Springer, 2015).

  • Fookes, P. G., Gourley, C. S. & Ohikere, C. Rock weathering in engineering time. Q. J. Eng. Geol. 21, 33–57 (1988).

    Article 

    Google Scholar 

  • Kaonga, C. C., Kosamu, I. B. M. & Utembe, W. R. A review of metal levels in urban dust, their methods of determination, and risk assessment. Atmosphere 12, 891 (2021).

    Article 

    Google Scholar 

  • Tegen, I., Lacis, A. & Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380, 419–422 (1996).

    Article 

    Google Scholar 

  • Willison, M. J., Clarke, A. G. & Zeki, E. M. Chloride aerosols in central northern England. Atmos. Environ. 23, 2231–2239 (1989).

    Article 

    Google Scholar 

  • Thorslund, J., Bierkens, M. F. P., Oude Essink, G. H. P., Sutanudjaja, E. H. & van Vliet, M. T. H. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 12, 4232 (2021).

    Article 

    Google Scholar 

  • Yakirevich, A. et al. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: a study of the Alto Piura aquifer, Peru. J. Hydrol. 482, 25–39 (2013).

    Article 

    Google Scholar 

  • Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).

    Article 

    Google Scholar 

  • Hinckley, E.-L. S., Crawford, J. T., Fakhraei, H. & Driscoll, C. T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597–604 (2020).

    Article 

    Google Scholar 

  • Page, K. L. et al. Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review. Soil Res. 47, 747–762 (2009).

    Article 

    Google Scholar 

  • Thorslund, J. & van Vliet, M. T. H. A global dataset of surface water and groundwater salinity measurements from 1980–2019. Sci. Data 7, 231 (2020).

    Article 

    Google Scholar 

  • United Nations Environment Programme. GEMStat database of the Global Environment Monitoring System for Freshwater (GEMS/Water) programme. GEMStat https://gemstat.org/data/data-portal (2018).

  • Environment and Climate Change Canada. National long-term water quality monitoring data. ECCC https://data.ec.gc.ca/data/substances/monitor/national-long-term-water-qualitymonitoring-data (2022).

  • US Geological Survey. USGS water data for the nation. USGS https://waterdata.usgs.gov/nwis (2021).

  • Elvidge, C. D. et al. Global distribution and density of constructed impervious surfaces. Sensors 7, 1962–1979 (2007).

    Article 

    Google Scholar 

  • Glicksman, R. L. & Earnhart, D. H. The comparative effectiveness of government interventions on environmental performance in the chemical industry. Stanf. Environ. Law J. 26, 317–372 (2007).

    Google Scholar 

  • Schroeder, C. Foreword: a decade of change in regulating the chemical industry. Law Contemp. Probl. 46, 1–40 (1983).

    Google Scholar 

  • Wetzel, R. G. Limnology: Lake and River Ecosystems (Gulf Professional, 2001).

  • Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Phil. Trans. R. Soc. B 374, 20180005 (2019).

    Article 

    Google Scholar 



  • Source link



    Leave a Reply

    Your email address will not be published. Required fields are marked *