Landscape genomics reveals adaptive genetic differentiation driven by multiple environmental variables in naked barley on the Qinghai-Tibetan Plateau

·

·


  • Abebe TD, Naz AA, Léon J (2015) Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.). Front Plant Sci 6:813

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    CAS 
    PubMed 

    Google Scholar 

  • Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH et al. (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    CAS 
    PubMed 

    Google Scholar 

  • Barley AJ, Monnahan PJ, Thomson RC, Grismer LL, Brown RM (2015) Sun skink landscape genomics: assessing the roles of micro-evolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape. Mol Ecol 24:1696–1712

    PubMed 

    Google Scholar 

  • Barrero-Sicilia C, Hernando-Amado S, González-Melendi P, Carbonero P (2011) Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234:391–403

    CAS 
    PubMed 

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS 
    PubMed 

    Google Scholar 

  • Capblancq T, Forester BR (2021) Redundancy analysis: a swiss army knife for landscape genomics. Methods Ecol Evol 12:2298–2309

    Google Scholar 

  • Capblancq T, Luu K, Blum M, Bazin E (2018) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18:1223–1233

    CAS 
    PubMed 

    Google Scholar 

  • Caproni L, Lakew BF, Kassaw SA, Miculan M, Ahmed JS, Grazioli S et al. (2023) The genomic and bioclimatic characterization of Ethiopian barley (Hordeum vulgare L.) unveils challenges and opportunities to adapt to a changing climate. Glob Chang Biol 29:2335–2350

    CAS 
    PubMed 

    Google Scholar 

  • Caye K, Jumentier B, Lepeule J, François O (2019) LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol 36:852–860

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang CW, Fridman E, Mascher M, Himmelbach A, Schmid K (2022) Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity 128:107–119

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y et al. (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    CAS 
    PubMed 

    Google Scholar 

  • Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA et al. (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001

    CAS 
    PubMed 

    Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M et al. (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    CAS 
    PubMed 

    Google Scholar 

  • Contreras-Moreira B, Serrano-Notivoli R, Mohammed NE, Cantalapiedra CP, Beguería S, Casas AM et al. (2019) Genetic association with high-resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Mol Ecol 28:1994–2012

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cortés AJ, Blair MW (2018a) Genotyping by sequencing and genome-environment associations in wild common bean predict widespread divergent adaptation to drought. Front Plant Sci 9:128

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cortés AJ, Skeen P, Blair MW, Chacón-Sánchez MI (2018b) Does the genomic landscape of species divergence in phaseolus beans coerce parallel signatures of adaptation and domestication? Front Plant Sci 9:1816

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L et al. (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA et al. (2011) The variant call format and VCF tools. Bioinformatics 27:2156–2158

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Pierroa EA, Mosca E, González-Martínez SC, Binelli G, Neale DB, Porta NL (2017) Adaptive variation in natural alpine populations of Norway spruce (Picea abies L. karst) at regional scale: landscape features and altitudinal gradient effects. Ecol Manag 405:350–359

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:39–40

    Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed 

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang Z, Gonzales AM, Clegg MT, Smith KP, Muehlbauer GJ, Steffenson BJ et al. (2014) Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3 (Bethesda) 4:1193–1203

    PubMed 

    Google Scholar 

  • Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, Bocinsky RK et al. (2020) Genomic history and ecology of the geographic spread of rice. Nat Plants 6:492–502

    PubMed 

    Google Scholar 

  • Han GS, Carman GM (2017) Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis. J Biol Chem 292:13230–13242

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newslett 127:15–19

    Google Scholar 

  • Hübner S, Höffken M, Oren E, Haseneyer G, Stein N, Graner A et al. (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 18:1523–1536

    PubMed 

    Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones H, Civáň P, Cockram J, Leigh FJ, Smith LM, Jones MK et al. (2011) Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces. BMC Evol Biol 11:320

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Google Scholar 

  • Koipally J, Ashburner BP, Bachhawat N, Gill T, Hung G, Henry SA et al. (1996) Functional characterization of the repeated UASINO element in the promoters of the INO1 and CHO2 genes of yeast. Yeast 12:653–665

    CAS 
    PubMed 

    Google Scholar 

  • Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH (2012) Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol Ecol 21:5512–5529

    PubMed 

    Google Scholar 

  • Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J et al. (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1:e1400218

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leamy LJ, Lee CR, Song Q, Mujacic I, Luo Y, Chen CY et al. (2016) Environmental versus geographical effects on genomic variation in wild soybean (Glycine soja) across its native range in northeast Asia. Ecol Evol 6:6332–6344

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei L, Poets AM, Liu C, Wyant SR, Hoffman PJ, Carter CK et al. (2019) Environmental association identifies candidates for tolerance to low temperature and drought. G3 (Bethesda) 9:3423–3438

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li J, Chen GB, Rasheed A, Li D, Sonder K, Zavala Espinosa C et al. (2019) Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Mol Ecol 28:3544–3560

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li JX, Zhu XH, Li Y, Liu Y, Qian ZH, Zhang XX et al. (2018) Adaptive genetic differentiation in Pterocarya stenoptera (Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biol 18:306

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Y, Zhang XX, Mao RL, Yang J, Miao CY, Li Z et al. (2017) Ten years of landscape genomics: challenges and opportunities. Front Plant Sci 8:2136

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li YH, Li D, Jiao YQ, Schnable JC, Li YF, Li HH et al. (2020a) Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnol J 18:389–401

    CAS 
    PubMed 

    Google Scholar 

  • Li Z, Lhundrup N, Guo G, Dol K, Chen P, Gao L et al. (2020b) Characterization of genetic diversity and genome-wide association mapping of three agronomic traits in Qingke barley (Hordeum Vulgare L.) in the Qinghai-Tibet Plateau. Front Genet 11:638

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    CAS 
    PubMed 

    Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. New York, NY: Columbia University Press

  • Norsang G, Tsoja KW, Stamnes JJ, Dahlback A, Nema P (2009) Ground-based measurements and modeling of solar UV-B radiation in Lhasa, Tibet. Atmos Environ 43:1498–1502

    CAS 

    Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D (2022) VEGAN: community ecology package. R package version 2.3-2, https://CRAN.R-project.org/package=vegan

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    PubMed 
    PubMed Central 

    Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajendran NR, Qureshi N, Pourkheirandish M (2022) Genotyping by sequencing advancements in barley. Front Plant Sci 13:931423

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370

    PubMed 

    Google Scholar 

  • Rhoné B, Defrance D, Berthouly-Salazar C, Mariac C, Cubry P, Couderc M et al. (2020) Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nat Commun 11:5274

    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F et al. (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030

    CAS 
    PubMed 

    Google Scholar 

  • Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820

    CAS 
    PubMed 

    Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol S 38:595–619

    Google Scholar 

  • Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and Cases. Annu Rev Ecol Evol S 43:23–43

    Google Scholar 

  • Skinner JS, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ et al. (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    CAS 
    PubMed 

    Google Scholar 

  • Storey JD, Bass AJ, Dabney A, Robinson D (2023) Q-value estimation for false discovery rate control (R package version 2.32.0)

  • Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51:308–321

    CAS 
    PubMed 

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Temunović M, Franjić J, Satovic Z, Grgurev M, Frascaria-Lacoste N, Fernández-Manjarrés JF (2012) Environmental heterogeneity explains the genetic structure of Continental and Mediterranean populations of Fraxinus angustifolia Vahl. PLoS One 7:e42764

    PubMed 
    PubMed Central 

    Google Scholar 

  • Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang L, Xu JQ, Xia TF, Zhang HG, Liu DC, Shen YH (2014) Population structure and linkage disequilibrium in six-rowed barley landraces from the Qinghai-Tibetan Plateau. Crop Sci 54:2011–2022

    Google Scholar 

  • Watterson GA (1975) Number of segregating sites in genetic models without recombination. Theor Popul Biol 7:256–276

    CAS 
    PubMed 

    Google Scholar 

  • Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. J Exp Bot 53369:727–735

    Google Scholar 

  • Yahiaoui S, Igartua E, Moralejo M, Ramsay L, Molina-Cano JL, Ciudad FJ et al. (2008) Patterns of genetic and eco-geographical diversity in Spanish barleys. Theor Appl Genet 116:271–282

    CAS 
    PubMed 

    Google Scholar 

  • Yang J, Miao CY, Mao RL, Li Y (2017) Landscape population genomics of forsythia (Forsythia suspensa) reveal that ecological habitats determine the adaptive evolution of species. Front Plant Sci 8:481

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoder JB, Tiffin P (2017) Effects of gene action, marker density, and timing of selection on the performance of landscape genomic scans of local adaptation. J Hered 109:16–28

    PubMed 

    Google Scholar 

  • Zeng X, Guo Y, Xu Q, Mascher M, Guo G, Li S et al. (2018) Origin and evolution of qingke barley in Tibet. Nat Commun 9:5433

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang XX, Liu BG, Li Y, Liu Y, He YX, Qian ZH et al. (2019a) Landscape genetics reveals that adaptive genetic divergence in Pinus bungeana (Pinaceae) is driven by environmental variables relating to ecological habitats. BMC Evol Biol 19:160

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang C, Dong SS, Xu JY, He WM, Yang TL (2019b) PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786–1788

    CAS 
    PubMed 

    Google Scholar 

  • Zhang RB, Yuan YJ, Wei WS, Go XH, Yu SL, Shang HM et al. (2015) Dendroclimatic reconstruction of autumn-winter mean minimum temperature in the eastern Tibetan Plateau since 1600 AD. Dendrochronologia 33:1–7

    Google Scholar 

  • Zhao W, Sun YQ, Pan J, Sullivan AR, Arnold ML, Mao JF et al. (2020) Effects of landscapes and range expansion on population structure and local adaptation. N. Phytol 228:330–343

    CAS 

    Google Scholar 

  • Zhao Y, Vrieling K, Liao H, Xiao M, Zhu Y, Rong J et al. (2013) Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon? Mol Ecol 22:5531–5547

    CAS 
    PubMed 

    Google Scholar 



  • Source link



    Leave a Reply

    Your email address will not be published. Required fields are marked *